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Abstract

I consider two puzzles in which an agent undergoes a sequence of de-
cision problems. In both cases it is possible to respond rationally to any
given problem yet it is impossible to respond rationally to every problem
in the sequence, even though the choices are independent. In particular,
although it might be a requirement of rationality that one must respond
in a certain way at each point in the sequence, it seems it cannot be a
requirement to respond as such at every point for that would be to require
the impossible.
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When faced with an infinite sequence of decisions, rational agents can do
some very strange things. Arntzenius and Barrett [1] present a puzzle where
the agent is offered an infinite sequence of choices. If the agent acts rationally
at each point, then he is guaranteed to make a loss after the sequence is over
and he may be certain of this. You might take this to be a counterexample to
the principle that if one acts rationally with respect to an interval of time, then
one has acted rationally at every subinterval.

The puzzles I am concerned with involve a violation of a related principle.
An agent will be given a sequence of decision problems in succession, each with
a clear and simple solution. It is thus possible to respond rationally to any given
problem, yet it is impossible to respond rationally to all of them together, even
though the choices are independent. The first puzzle involves a game between
two players in which both players have a winning strategy. It is thus impossible
for both players to follow their strategy, meaning that there must have been a
point at which at least one player was able to play according to his strategy,
should have done, but didn’t. The second puzzle involves offering an agent a
sequence of choices such that it is possible to respond rationally to each choice
alone, making a guaranteed profit, yet it is impossible to respond rationally at
every point, meaning there’s a time when you were able to act so as to maximise
utility, but didn’t.
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1 Puzzle one

The first puzzle may be described as a game between two players: Alice and
Bob.

For each n ∈ ω, at 1
n hours past 12pm Alice and Bob will play a

round of the game. A round involves two moves: firstly Alice chooses
either 1 or 0, and then Bob makes a similar choice. The moves are
made in that order, and both players hear each choice. Alice wins
the round if Bob’s choice is the same as hers, and Bob wins if his
choice is different. The game finishes at 1pm, Alice wins the game
if she wins at least one round, Bob wins the game if he wins every
round.1

On the face of it, Alice doesn’t have a hope in hell of winning. For all Bob has
to do, at each round, is to say exactly the opposite of what Alice says. Since
there’s nothing Alice can do to prevent him doing this at every round, it seems
she’s bound to lose.

It should, then, be quite surprising to find out that there is something Alice
can do to ensure she wins. She has a winning strategy. By a strategy for this
game, I mean an instruction telling the player what to do at a time given any
possible play of the game up to that time. More formally we may represent a
strategy as a function which takes any possible initial sequence of moves of the
game to a move. The move represents what choice that player would make on
the upcoming round given an initial sequence of play, if she were adopting that
strategy. A winning strategy for a player is one such that, if at every point in
the game the player makes the move that strategy suggests given the sequence
of moves played so far, that player would win. I shall occasionally talk about
the nth round, by which I mean the nth round from the end, i.e., the round
that takes place at 1

n hours past 12.
As I said, Alice has a winning strategy for the game described above. There

are various ways that Bob could play throughout a whole game, but any way
he plays can be encoded as an ω-sequence of 1’s and 0’s, where the nth term
in the sequence represents how he responds in the nth round. Before the game
starts, Alice chooses her strategy as follows. Alice divides these sequences into
equivalence classes according to whether they differ by finitely many moves at
most. With the help of the Axiom of Choice, Alice then picks a representative
from each equivalence class and memorises it. At any point after the game has
started, Alice will know what moves Bob has made at infinitely many of the
rounds, and will only be ignorant of the moves Bob is yet to play, of which there
are only finitely many. Thus, at any point after 12pm, Alice will know to which
equivalence class the sequence of moves Bob will eventually make belongs. Her
strategy at each round, then, is to play how the representative sequence for this
equivalence class predicts Bob will play at that round. If the representative

1It seems natural to suppose that backwards supertasks, such as this one, are possible if
the ordinary kind are. For example, presumably Zeno’s Achilles performs such a supertask
every time he moves, in much the same way as he performs a forwards supertask.
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sequence is right about Bob’s move at that round, Alice will win that round.
However, the representative sequence and the sequence that represents how Bob
actually played, must be in the same equivalence class: they must be the same
at all but finitely many rounds. If Alice played according to the representative
sequence at every round, then she will have won all but finitely many of the
rounds, meaning that she has won the game.

This result has some very surprising consequences. For example, suppose
Bob decided to flip a coin to decide his move at every round. If Alice follows
her strategy, then she will be guaranteed to correctly guess infinitely many of the
coin flips, and indeed, there will be a point at which she has correctly guessed
infinitely many flips in a row. Intuitively, there should be no strategy that could
guarantee that Alice guesses even one flip correctly, if the coin is fair. Secondly,
Bob also appears to have a winning strategy: all Bob needs to do is say the
opposite of what Alice says at every round.

This last fact should be puzzling, since only one player can win a game. This
means that for any given game, at least one player will not successfully imple-
ment their strategy at every round despite, we may assume, being physically
able to, and wanting to.

2 Puzzle two

One might have thought that the problem in the last section was due to the
axiom of choice, or the possibility of beings that can grasp infinitely complex
strategies. Although perhaps not as striking, the following puzzle does not
involve either of these elements.

For each n ∈ ω, at 1
n hours past 12pm, Alice will be asked to choose

either 1 or 0. If she answers according to the following rule, she will
receive a chocolate.2 The rule is: choose 1, if you have chosen 0 at
every previous round, and chose 0 otherwise (i.e. if you have chosen
1 on at least one other round.)

Much like Bob’s strategy in the first game, this is a relatively easy strategy
to implement, and it does not require the axiom of choice to generate. However,
it is not possible to follow the rule at every time between 12pm and 1pm. The
reasoning is essentially that involved in Yablo’s paradox: either Alice chooses
1 on some round, or she always chose 0. (i) if on some round, she correctly
followed the rule and chose 1, then she must have chosen 0 on all the previous
rounds. In particular, she must have chosen 0 on the immediately preceding
round. In which case she has violated the rule on this round, since she chose 0,
when all the previous rounds were 0. (ii) if she always chose 0, then she violated
the rule at every round by not choosing 1.

2Or at least, something that can immediately be converted into hedons before the next
choice.
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3 Consequences

It is commonly thought that to be rational is to have certain dispositional prop-
erties. It is not enough to have always acted in the most rational way, otherwise
one could be rational by having never needed to make any decisions at all. A
perfectly rational agent must also be disposed to act rationally in the sense
that, if he were offered a given decision problem, he would respond in a way
that maximised his expected utility. The robustness of rational behaviour under
such counterfactual suppositions is essential, for example, in game theory for
motivating the various equilibrium concepts.

Just how one spells out these dispositions is a delicate matter. For example,
we should not expect the agent to continue to behave rationally if he underwent
some cognitive malfunction. But what seems clear is that the choices involved
at each round of the two puzzles above have the quality of a decision problem,
where the agents are free to act rationally. In the first puzzle, we may assume
that both players have a stake in winning the game. To avoid irrelevant compli-
cations we may go one further and stipulate that both players have a stake in
playing a given winning strategy at each round. Similar remarks apply to the
second puzzle. So as not to get mixed up with accumulating infinite utilities,
we may think of each round as a single decision problem, having a reward which
gets spent before the next round.

The fact that, necessarily, there will be a player and a round in one of the
two puzzles who does not act so as to maximise utility, suggests that no one can
have the right counterfactual properties required of perfect rationality.

On closer scrutiny, however, this doesn’t quite follow. Let us concentrate on
the second puzzle. For each possible initial sequence of choices Alice could have
made, t, let Et be the proposition that Alice has received evidence that she has
so far chosen according to the sequence t. Let Rt be the proposition that Alice
acts rationally at the next round: she follows the rule and receives a reward.
Then we may consistently assert the following schema:

Et � Rt (1)

Each instance is intuitively true if Alice is rational, since in the closest worlds
where Alice has taken part of a game up to the point t, she responds by following
the rule so that she may receive a reward.

So it seems like Alice can consistently have the dispositions required to be
rational, by responding correctly in the merely possible situations where Et

obtains - even if she has acted irrationally earlier at that world. But what
happens if Alice is in a world where she is actually going to be put through one
of these supertask decision sequences? Since for each sequence that actually
occurs, t, we have Et and Et � Rt we may infer that Rt. This is impossible:
Alice cannot follow the rule on every round. It is impossible for an ideally
rational agent to find themselves in a situation where they will undergo such a
procedure.3

3One might put it paradoxically: suppose that Alice and Ecila are intrinsic duplicates at
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The puzzles also seem to give rise to counterexamples to the deontic Barcan
formula. For at each point in the game rationality requires Alice to follow her
strategy, yet to require that Alice follow it at every point would be to require
the impossible.45
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11am. Between 12pm and 1pm Alice will undergo one of these decision sequences, while Ecila
does not, and never will. Ecila has the right dispositional properties to be rational, yet Alice
does not, since there will be some instance of (1) she does not satisfy.

4One might think the deontic Barcan formula fails for more mundane reasons. The in-
teresting thing about these puzzles is that they provide counterexamples principle that a
conjunction of requirements is a requirement. This is much weaker since it remains valid
even over the class of variable domain Kripke models. Similar remarks apply also to the
Arntzenius-Barrett puzzle.
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